

1.3 Sustainable Management of SPAs Through Delineation of Buffer Zones

Michelle Price-Hayward¹, Margarita Fernandez², Jorge Diogene²

¹Cefas-Centre for Environment, Fisheries & Aquaculture Science ²IRTA -Institute of Agrifood Research and Technology

Final Meeting - 15 April 2021

Ambitions

SEAFO D TOMORROW

- Better understanding of the interaction between factors that lead to closures
- Improved modelling tools to predict impacts from norovirus and algal biotoxins
- Better predictions to inform industry and regulators to reduce impact and maintain public health protection

Outcomes

- Investigation of the suitability of a buffer zone approach to management of bivalve shellfisheries
- Modelling of norovirus and toxins to predict impacts based on specific areas in England and Spain
- Description of how to apply this information

SEAFO D TOMORROW

Buffer Zone Modelling Protocol

- Characterisation of area
 - Sanitary Survey
 - Bathymetric data
 - Environmental data
 - Knowledge of sources
- Modelling can be applied by a specialist

• Tidal cycles, dilution, die off and depuration to be considered in developing a dynamic buffer zone based on area and sources

Toxic Phytoplankton Model

- Alfacs Bay rich dataset
- Five taxa studied
- Neural network models developed
 - 1-2 weeks forecast
 - Abundances above/below alert threshold values for Alfacs Bay

Taxon	Threshold alert concentration (cells L-1)
Alexandrium minutum	1,000
Pseudo-nitzschia spp	2,000,000
Dinophysis spp	500
Dinophysis caudata	500
Dinophysis sacculus	500

Harvest prediction tool

 Modelling based on depuration rate from McMenemy, et al 2018

Requires knowledge of *E.* coli in both seawater and shellfish on start date

Measured in shellfish on day 1

Measured in water on day 1

Parameter	Value
Start date (dd/mm/yyyy)	01/01/2021
Species (mussel, oyster, cockle)	oyster
Season (cold, warm)	cold
NoV Threshold (copies/g)	600
Initial E. coli Concentration	1000
(MPN/100g)	
Initial E. coli uptake (MPN/100mL)	500
Depuration rate (d ⁻¹)	7.89456
Possible harvest date	
27/01/2021	

Some scenarios give very long closure times

Next Steps and Future Work

- Develop projects for further validation work in different locations
- Further work toward development of modelling for toxin prediction in wider areas
 - Refine to allow lower detection limits
 - Identify data rich areas that could support further development of approaches
 - Advocate for improved data gathering in areas that have toxin issues
- Real-world testing and applicability

Thank You

Contact Details:

Michelle Price-Hayward, Cefas – michelle.price-hayward@cefas.co.uk

